
Nature Cities

nature cities

https://doi.org/10.1038/s44284-025-00233-xArticle

Declining short-term emission control 
opportunity for major events in  
Chinese cities
 

Hanying Wang1, Qin He    2, Hao Kong3, Kai Qin2, Bo Zheng    4,5, Jintai Lin    3 & 
Yu Zhao    1,6 

In China, short-term emission controls have been implemented widely in 
the host and nearby cities of major events to reduce air pollution. However, 
insufficient analysis of their effectiveness has weakened the design of 
pollution controls. In this study, we analyzed the impact of short-term 
controls on nitrogen oxide emissions and quantified their main drivers in 
both the host and neighboring cities of 11 events held in east China from 
2010 to 2023. We found that short-term controls might be more effective in 
neighboring cities than in host cities for some events, and that their benefits 
in terms of reduced emissions have weakened over time. Furthermore, the 
main sector of emission abatement for events has shifted from power to 
industry and transportation, reflecting the evolution of emission controls 
and the relative dominance of air-pollution budgets for different sectors. 
Our analysis highlights the enhanced targeting of short-term air pollution 
controls for Chinese cities, which also supports the long-term policy design.

Air pollution, concomitant with the rapid growth of the economy and 
energy consumption, has long been a major concern in Chinese cities. 
For the past decade, China has been making great efforts to improve 
air quality through long-term regulatory frameworks1,2. Meanwhile, 
developed Chinese cities have hosted a number of major international 
and domestic events, including the Beijing Olympic Games (August 
2008), the Shanghai World Expo (May–October 2010), the Nan-
jing Youth Olympics (August 2014) and the Hangzhou Asian Games  
(September–October, 2023). To ensure the smooth operation of these 
events and to minimize the health risks associated with air pollution, 
stringent short-term emission control measures were implemented in 
the host cities of the events on top of the regular national policies on air 
quality3–8. Moreover, neighboring cities were usually also required to take 

additional measures (probably not as stringent as in the host cities) to 
achieve regional joint control of air pollution9. Typically, these measures 
included the temporary closure of manufacturing plants, the implemen-
tation of enhanced emission standards in the industrial and power sec-
tors, the prohibition of certain residential and commercial activities, and 
traffic restrictions in specific urban areas. These were initiated before 
individual events, gradually tightened and maintained during the event, 
and lifted after the event, resulting in declining air pollutant concentra-
tion during the event4,5. These short-term controls can be considered 
as ‘large-scale social experiments’ to examine the instant response of 
air quality to human activities, offer valuable information on urban  
air quality improvement, and provide insights for long-term strategies 
for reconciling urban environment and economic development.
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is highly involved in the formation of fine particulate matter (PM2.5) 
and ozone (O3), and comes from both natural (for example, soil and 
lightning) and anthropogenic sources. In the YRD, with abundant 
anthropogenic activities, NOx emissions are more closely associated 
with energy use and traffic. To summarize our approach, we first devel-
oped a novel strategy that combines available satellite observations 
and a machine learning algorithm to obtain a reconstructed dataset 
of NO2 TVCDs (RETOMI2). In this dataset, the data gaps are greatly 
filled and the horizontal resolution for the YRD is improved. We then 
inferred 7-day moving averages of NOx emissions at the city level around 
each of the 11 events (‘the a posteriori emissions’) using a top-down 
inversion that combines the Multiple-resolution Emission Inventory 
for China (MEIC)22,23, RETOMI2 and air quality modeling using the 
Weather Research and Forecasting–Community Multi-scale Air Qual-
ity (WRF-CMAQ) model24,25 at a horizontal resolution of 9 × 9 km2. We 
also analyzed and compared the maximum effectiveness of short-term 
emission controls across events, identified as the difference between 
the lowest daily NOx emissions (expressed as the 7-day moving average) 
during the main control period and the 7-day average emissions before 
the period. Finally, we quantified the contributions of emission and 
meteorological variation to the observed changes in NO2 concentra-
tion for each event to demonstrate the benefit of short-term controls 
on air quality.

Results
Improvement of the reconstructed NO2 TVCD dataset 
(RETOMI2)
Figure 1 illustrates the enhanced quality of our reconstructed NO2 TVCD 
dataset (RETOMI2) compared with the Peking University Ozone Moni-
toring Instrument NO2 (POMINO) and POMINO-TROPOMI products 
developed by Peking University (http://www.pku-atmos-acm.org/acm-
Product.php/). Derived respectively from OMI and TROPOMI measure-
ments, POMINO and POMINO-TROPOMI take into account China’s 
aerosol optical effect on NO2 retrieval and achieve more reasonable 
TVCDs for the country than global-level products21,26. Briefly, we per-
formed three main steps to create RETOMI2 with improved horizontal 
resolution and spatiotemporal coverage compared with POMINO: (1) 
we filled the data missing in POMINO with support from GOME-2, (2) we 
expanded the temporal coverage of POMINO-TROPOMI with support 
from step 1, and (3) we expanded the spatial coverage of step 2. The key 
procedures included the application of eXtreme Gradient Boosting 
(XGBoost) in steps 1 and 2, and the application of Data Interpolation 
Empirical Orthogonal Functions (DINEOF) in step 3. XGBoost was used 
to build the relationships between different satellite products and 
helped to obtain a long-term NO2 TVCD record with a high horizontal 

A number of studies have evaluated the effectiveness of short-term 
measures on air quality at major events, in particular, those hosted in 
Beijing, the capital city of China10–12. For example, enhanced emission 
controls were demonstrated to play a crucial role in air quality improve-
ment during the 2008 Beijing Olympics. Daily emissions of nitrogen 
oxides (NOx) during the event were estimated to be cut by 47% com-
pared with the June 2008 level based on a ‘bottom-up’ investigation11. 
Most existing studies focused on a single event, examining the variation 
in daily air quality or monthly emissions around the event period6. Due 
to a lack of information on instantly changing emissions, the impacts 
of meteorology and emission controls on air quality improvement 
for the host city have not been fully evaluated. More importantly, the 
similarities and differences in the short-term emissions reductions 
for multiple major events hosted in various cities, as well as their main 
drivers, remain poorly understood. Such research gaps prevent a full 
understanding of the changing effectiveness of short-term intensive 
controls, along with the continuous implementation of long-term 
national air quality policies, and largely weaken the scientific design of 
pollution controls with a comprehensive consideration of economic, 
social and environmental benefits.

The above limitations result mainly from inadequate data and 
knowledge of fast-changing emissions at a relatively fine temporal 
(for example, daily or weekly) and horizontal (for example, city or 
regional) resolution. Emission inventories developed with the ‘bot-
tom-up’ approach, which relies on annual energy consumption and 
industrial production, failed to track the short-term changes in human 
activities13. ‘Top-down’ inversion, which uses satellite-derived tropo-
spheric vertical column densities (TVCDs) as a constraint for emissions 
of specific air pollutants, such as nitrogen dioxide (NO2), improves the 
capability of capturing the spatiotemporal pattern of emissions14–17. 
However, there are substantial data gaps in daily TVCDs caused by 
cloud cover or instrumental deficiency18, and the horizontal resolutions 
of most satellite observations are too coarse for city-level evaluation 
(for example, the ground pixel size of 40 × 80 km2 for Global Ozone 
Monitoring Experiment-2 (GOME-2)19 and an overall resolution of 
13 × 24 km2 at nadir for Ozone Measure Instrument (OMI)20). Although 
the TROPOspheric Monitoring Instrument (TROPOMI)21 has greatly 
improved the resolution to 3.5 × 7 km2, the events before its launch 
( July 2018) could not benefit from its high-resolution observations 
unless specific data fusion took place.

In this study, we selected NOx as the target species and investigated 
the changing emission abatement resulting from short-term emis-
sion controls for 11 major events (Table 1) hosted in different cities 
in the Yangtze River Delta (YRD) region of China from 2010 to 2023 
(see Supplementary Fig. 1 for the locations and cities of the YRD). NOx 

Table 1 | The 11 major events and their main emission control periods, event duration and the inversion simulation period of 
NOx emissions

Event name Abbreviation Host city Main control period Event duration Inversion simulation period

2010 Expo China 2010 EXPO Shanghai 1 Apr.–31 Oct. 2010 1 May–31 Oct. 2010 1 Mar.–30 Nov. 2010

2013 Asian Youth Games 2013 AYG Nanjing 1–31 Aug. 2013 16–24 Aug. 2013 1 July–30 Sept. 2013

2014 Youth Olympic Games 2014 YOG Nanjing 15 July–31 Aug. 2014 16–28 Aug. 2014 1 July–30 Sept. 2014

2014 National Memorial Day 2014 NMD Nanjing 17 Nov.–17 Dec. 2014 13 Dec. 2014 1 Nov.–31 Dec. 2014

2015 National Memorial Day 2015 NMD Nanjing 7–15 Dec. 2015 13 Dec. 2015 1 Nov.–31 Dec. 2015

2016 G20 Summit 2016 G20 Hangzhou 1 Aug.–6 Sept. 2016 4–5 Sept. 2016 1 July–31 Sept. 2016

2016 National Memorial Day 2016 NMD Nanjing 9–13 Dec. 2016 13 Dec. 2016 1 Nov.–31 Dec. 2016

2018 International Import Expo China 2018 CIIE Shanghai 27 Oct.–10 Nov. 2018 5–10 Nov. 2018 1 Oct.–31 Nov. 2018

2019 International Import Expo China 2019 CIIE Shanghai 27 Oct.–10 Nov. 2019 5–10 Nov. 2019 1 Oct.–31 Nov. 2019

2020 International Import Expo China 2020 CIIE Shanghai 1–10 Nov. 2020 5–10 Nov. 2020 1 Oct.–31 Nov. 2020

2023 19th Asian Games 2023 AG Hangzhou 10 Sept.–8 Oct. 2023 23 Sept.–8 Oct. 2023 1 Aug.–31 Oct. 2023
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resolution (0.05° × 0.05°), while DINEOF further filled the data gap and 
helped to obtain RETOMI2 for the YRD.

As shown in Fig. 1, the RETOMI2 dataset has a clear advantage in 
spatial coverage, horizontal resolution and reliability in the daily varia-
tion of NO2 TVCDs compared with the two domestic products. Specifi-
cally, RETOMI2 shows a 67% improved spatial coverage compared with 
POMINO for the YRD during the main control periods of the 11 events 
(Fig. 1a). A consistent spatial distribution was found between the two 
products with the correlation coefficient calculated at 0.96 (Fig. 1b). 
Compared with POMINO, with a coarser resolution (0.25° × 0.25°), 
RETOMI2 (0.05° × 0.05°) presents a more subtle regional variation of 
NO2 TVCDs and thus can better capture hotspots and rapid changes 
in urban areas.

In addition, the standard deviation of RETOMI2 is smaller than 
that of POMINO for most of the YRD, with the average difference esti-
mated at −24.1% for the whole region (Supplementary Fig. 3). Figure 1c  
shows the daily NO2 TVCDs from satellite retrievals and multi-axis 
differential optical absorption spectroscopy (MAX-DOAS) measure-
ments for 2018 at a single site, Xuzhou, in the YRD (depending on the 
availability of observations; see Supplementary Fig. 4 for monthly 
TVCDs from 2014 to 2016 at various sites). In general, satellite-derived 
TVCDs are consistently lower than those from MAX-DOAS, which is 
attributed to the various retrieval techniques used and the effect of 
cloud cover on satellite measurements26. Among the satellite-derived 
products, RETOMI2 agrees best with the MAX-DOAS observations, with 
the highest correlation coefficients during the comparison periods for 

different cities. The comparisons demonstrate that RETOMI2 improves 
the estimation of the spatiotemporal pattern of NO2 TVCDs and thus 
is suitable for evaluating the changing NOx emissions at the city level.

The a posteriori NOx emissions for the events in host cities
Combined with RETOMI2 constraints, the a posteriori daily emissions 
were demonstrated to better track the short-term variation in NOx emis-
sions at the city level. The a posteriori emissions of NOx were 6–29% lower 
than those of MEIC, the current best available emissions data from the 
‘bottom-up’ approach, for the main control periods of all the concerned 
events in the YRD (Supplementary Table 1). The a posteriori emissions 
also better support the NO2, PM2.5 and O3 concentration simulations  
for the main control periods of all the concerned events in the YRD  
(Supplementary Tables 2–4). Specifically, the correlation coefficients 
(R) between simulations and observations were elevated by about 
0.02–0.1, 0.01–0.29 and 0.01–0.41 for NO2, PM2.5 and O3, respectively. 
The normalized mean bias (NMB) and normalized mean error (NME) 
were reduced from 50% to −4% and 51% to 23% for NO2, from 15% to 13% 
and 40% to 34% for PM2.5, and from −22% to 18% and 33% to 32% for O3, 
respectively. Note that the reductions in NOx emissions during the con-
cerned periods always enhanced O3 concentrations, which is attributed 
to a prevailing ‘volatile organic compound-limited’ O3 formation regime 
in the YRD, under which O3 is more sensitive to volatile organic com-
pounds and can be removed by ‘titration reaction’ with NO (refs. 27–29).

Figure 2 presents the 7-day moving averages of the a posteriori 
emissions of the host cities Shanghai, Nanjing and Hangzhou around 
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individual major events. Emissions were clearly reduced during the 
control periods of most events (blue shading in Fig. 2a), and rebounds 
were also observed for most events. The purple circles in the graphs 
indicate the points at which the emissions reversed from decline to 
growth. For 2010 World Expo (2010 EXPO), 2013 Asian Youth Games 
(2013 AYG), 2014 Youth Olympic Games (2014 YOG), 2014, 2015 and 
2016 National Memorial Day (2014 NMD, 2015 NMD and 2016 NMD, 
respectively), 2016 Group of Twenty Summit (2016 G20), 2018, 2019 
and 2020 International Import Expo China (2018 CIIE, 2019 CIIE and 
2020 CIIE, respectively), and 2023 19th Asian Games (2023 AG), the 
daily NOx emissions were estimated to decline by 630, 110, 120, 190, 
120, 60, 10, 250, 100, 390 and 60 Mg, respectively, from the start of 
the control periods to the reversal point. These results confirm that 
short-term emission controls were effective in limiting NOx emissions 
during events.

Shanghai and Nanjing held their first global events (2010 EXPO and 
2013 AYG, respectively) in the early 2010s. Due to the lack of experience 
in short-term air quality improvement, many more stringent temporal 
measures than usual were imposed before the events, leading to rela-
tively large emission abatement. However, the emissions rebounded 

shortly after these events started (about 4 days later). In contrast, the 
controls of subsequent events presented a gradual and consistent 
decline in emissions, implying more sustainable emission control 
practices. Two series of events, NMD and CIIE, have been organized 
annually since 2014 in Nanjing and since 2018 in Shanghai, respectively. 
The lengths of the control periods for the NMD and CIIE events were 
shortened year by year (31, 9 and 5 days for NMD from 2014 to 2016, and 
15, 15 and 10 days for CIIE from 2018 to 2020). The shortened control 
periods reflect a more cautious strategy, aiming at minimizing the 
disruption to regular economic activities and daily lives.

The big changes (declines and rebounds) observed in NOx emis-
sions during the main control period typically correspond to the 
timeline (beginning and end) of the short-term intensified measures. 
The staged implementation of control measures led to progressive 
abatement of emissions (see Supplementary Table 5 for details of the 
intensified measures). During 2014 YOG, for example, control meas-
ures were implemented in two phases (phase I, 15–31 July and phase 
II, 1–31 August). Phase II provided stricter controls on point, area and 
mobile sources. Consequently, the NOx emissions began to decline 
from 15 July, followed by a more substantial reduction from 1 August. 
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The rates of emissions decline were estimated at 6.6 and 6.9 Mg d−1 for 
the two phases, respectively. Similarly, during phase II of 2016 G20  
(28 August–3 September), the government adopted additional control 
measures for mobile sources and emergency control measures com-
pared with phase I (1–27 August), which resulted in a big reduction in 

NOx emissions from 28 August (the rates of decline for the two phases 
were 6.2 and 10.9 Mg d−1, respectively). In general, the average daily 
NOx emissions were at their lowest during the event period (within and 
shorter than the main control period) for most major events as this was 
usually the period with the most stringent short-term controls (Fig. 2b).
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Drivers of emission change during major events
Figure 3 shows the NOx emissions by sector around the 11 major 
events. The 7-day averages immediately before the main control 
period and those during the period were compared to assess the 
relative changes in emissions. Shanghai is one of the most industrial-
ized cities in China, with the annual NOx emissions reaching 431 Gg 
in 2020 (data source: MEIC). The power sector was identified as  
the main driver of the change in NOx emissions during 2010 EXPO 
(Fig. 3a). Compared to the pre-control period, the NOx emissions 
from the power sector declined by 15.9% for the main control period, 
accounting for 49% of the total reduction in NOx emissions during this 
period. The large reduction in power sector emissions was mainly 
a result of the enhanced use of selective catalyst reduction (SCR) 
systems. Industry and transport played a greater role in reducing 
emissions during 2018, 2019 and 2020 CIIE, accounting for 71%, 87% 
and 80% of the total reduction, respectively. This shift in the main 
sectors responsible for the short-term emissions reductions reflects 
the diverse progress of the emission controls for different sectors. 
The power sector was a major contributor of NOx emissions in the 
early 2010s30. After 2010 EXPO, Shanghai continued to improve SCR 
penetration and operation as part of its regular air quality measures, 
and consequently the NOx emissions from the power sector in the 
city have shown a prominent downward trend since 2010, stabilizing 
during 2016–2020 with an abatement of approximately 65% com-
pared to the 2010 level (MEIC; Supplementary Fig. 5b,f). Improved 
regular controls have largely reduced the extra benefit of short-term 
measures on power plants during the major events. Therefore, the 
measures for later events focused more on the industry and transport 
sectors (Supplementary Table 5).

Nanjing, the capital of Jiangsu Province, is also highly industrial-
ized, with the annual level of NOx emissions around half that of Shang-
hai. The main driver of emission changes in 2014 was the industry 
sector, accounting for 59% and 74% of the total reduction for 2014 YOG 
and 2014 NMD, respectively (Fig. 3b). Transport was more important 
for other events, accounting for 65%, 77% and 45% of the total reduc-
tion for 2013 AYG, 2015 NMD and 2016 NMD, respectively. As a legacy 
of 2014 YOG, in particular, the Nanjing government has continuously 
implemented stringent emission controls on industrial sources as part 
of its regular actions, such as the closure of all small coal-fired boilers. 
As a result, the industry sector was not the major driver of emissions 
reduction for subsequent events, with a gradually weakening benefit 
from short-term measures (reductions of 22, 17, 13 and 4 Mg d−1 for 2014 
YOG, 2014 NMD, 2015 NMD and 2016 NMD, respectively). Hangzhou is 
a developed city dominated by the tertiary sector. Transport was the 
main sector driver of emission abatement for 2016 G20 and 2023 AG, 

accounting for 89% and 41% of the total reduction during the main 
control periods, respectively (Fig. 3c).

Reducing the benefit of short-term controls for events
Figure 4 illustrates the effectiveness of short-term controls (or maxi-
mum daily emissions reduction, expressed as the relative difference 
between the smallest daily NOx emissions during the main control 
period (7-day moving average) and the 7-day average before this period) 
in the host and neighboring cities for the major events. For the events 
hosted in Shanghai, the effectiveness declined from 2010 to 2020. The 
maximum daily emissions reduction in Shanghai decreased from 53.6% 
for 2010 EXPO to 17.9% for 2020 CIIE, while the reduction in neighbor-
ing cities decreased from 31.3% for 2010 EXPO to 7.7% for 2019 CIIE, 
followed by a slight increase to 8.6% for 2020 CIIE. The effectiveness (or 
marginal benefit) of short-term measures was greater for Shanghai than 
for neighboring cities for all four events. This implies a more compre-
hensive design and more exhaustive implementation of the temporary 
measures in Shanghai, for example, better planning of city transport to 
reduce traffic congestion and stricter supervision of industrial plants 
to ensure the full operation of air pollutant control devices.

For the events hosted in Nanjing, the effectiveness of emission con-
trols grew from 2013 to 2014, but then declined from 2014 to 2016. The 
maximum daily reductions for Nanjing were estimated at 26.7%, 33.5%, 
30.3%, 13.9% and 5.6% for 2013 AYG, 2013 YOG, 2014 NMD, 2015 NMD and 
2016 NMD, respectively, while the analogous numbers were 25.9%, 30.7%, 
23.3%, 20.7% and 7.7% for neighboring cities, respectively. For the events 
hosted in Hangzhou, the maximum daily reduction in NOx emissions 
declined from 29.6% for 2016 G20 to 18.0% for 2023 AG for Hangzhou, 
and from 35.7% to 33.3% for neighboring cities. Since 2015, the short- 
term controls in the host cities Nanjing and Hangzhou have been less 
effective in reducing emissions than in the neighboring cities, in contrast 
to the events held in Shanghai. This is partly a result of the faster pro-
gress and/or greater abundance of regular emission controls in Nanjing  
and Hangzhou than in their neighboring cities31, which might partly 
mask the extra effect of short-term controls specifically for the events.

Among different events, the maximum daily reduction in NOx 
emissions ranged between 5.6% and 54.0%. A clear downward trend 
existed in the overall opportunity of short-term measures on extra 
emission abatement in the host and neighboring cities over the period 
of 2010–2023, which was associated with the increasingly conservative 
implementation of temporal emission controls for events, as previously 
mentioned. Moreover, the improving implementation of long-term 
air quality policies has reduced NOx emissions, thereby limiting the 
marginal benefit of short-term measures on emissions reduction. 
Long-term policies, such as the implementation of gradually tightened 
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emissions standards, increasing the use of end-of-pipe emission control 
devices, and the retirement of small and inefficient factories, have 
greatly reduced the so-called super emitters. Consequently, the extra 
benefit of the temporary closure of super emitters for individual events 
has greatly shrink.

Impacts of emissions and meteorology on NO2 concentration
The change in NO2 concentration from the pre-control to the control 
period (see Supplementary Table 6 for definitions) was decomposed 
into meteorological- and emission-induced contributions for each of 
the 11 events (Fig. 5; see Methods for details of the simulation experi-
ments). Compared to the pre-control period, the NO2 concentrations 
were estimated to decline during the main control period by 31.8%, 
4.6%, 27.3%, 32.0%, 10.0%, 3.3% and 60.3% for 2010 EXPO, 2013AYG, 2015 
NMD, 2016 NMD, 2019 CIIE, 2020 CIIE and 2023 AG, respectively, while 

they were estimated to increase by 16.2%, 2.9%, 44.7% and 6.7% for 2014 
YOG, 2014 NMD, 2016 G20 and 2018 CIIE, respectively.

For most events (except 2010 EXPO and 2015 NMD), meteorological 
variation enhanced NO2 concentration, while emission controls more or 
less offset it. In particular, meteorological variation contributed 63.7% 
and 70.7% to the rise in NO2 concentration for the host cities in 2014 
YOG (Nanjing) and 2016 G20 (Hangzhou), respectively. Measurements 
revealed that the NO2 concentration during 2014 YOG (16–28 August) 
did not present a clear decline, as it did during 2013 AYG in Nanjing 
(Supplementary Fig. 6), while short-term controls resulted in a greater 
reduction in NO2 concentration for 2014 YOG (−2.2 μg m−3) than for 
2013 AYG (−0.9 μg m−3). A less favorable diffusion condition was thus 
indicated for 2014 YOG than for 2013 AYG. Lower wind speed and lower 
planetary boundary layer height weakened the dispersion of atmos-
pheric pollutants, while lower 2-m temperatures reduced convective 
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instability (Supplementary Fig. 7). For 2016 G20, there was a decline in 
10-m wind speed over Hangzhou in phase II (28 August–6 September), 
which facilitated pollutant formation and accumulation in the city. The 
decline in the planetary boundary layer height and surface temperature 
also affected the diffusion of pollutants. However, during 4–5 September, 
the concentration of pollutants, in particular, particulate matter, did not 
increase, which is attributed to the large emissions reduction (Supple-
mentary Fig. 8). Therefore, the short-term controls greatly overcame the 
adverse impact of meteorology and improved air quality for the event.

Discussion
Using a reconstructed database of NO2 TVCDs as constraints and an 
inverse modeling system, we have presented here the estimates of 
7-day moving averages of NOx emissions for 11 major events hosted in 
east China. The results support analyzing the effectiveness of short-
term emission controls in developed cities in China. Moreover, com-
bined with existing long-term air pollution regulations, the outcomes 
shed light on future strategy design and policy-making for national air  
quality improvement.

Our findings confirmed the crucial role of short-term measures in 
reducing NOx emission during the 11 major events. However, the oppor-
tunity of temporal measures to provide extra emission abatement has 
gradually declined, mainly due to the continuous implementation of 
tightened long-term air quality policies. Moreover, for short-term 
controls in cities, there has been a shift from the implementation of 
extremely stringent and extensive measures to a more conservative 
strategy with limited but precise actions on key emitters, aiming to 
minimize disruption to regular daily lives. Temporal measures might be 
more effective in neighboring cities than in the host cities of the events 
as the more stringent regular controls for the latter have reduced the 
potential for further emission abatement for events. The transition of 
the major driver of emissions reduction from power to the industry and 
transport sectors reflects the successful efforts to reduce emissions 
from power plants over the long term, including compulsory retro-
fitting with ultralow emission technologies. Moreover, after events, 
specific useful short-term measures on air quality improvement would 
be adapted and incorporated into long-term air quality policies. These 
included strict supervision and monitoring of targeted sectors with 
greater emission abatement potential and better cooperation of pol-
lution controls across different regions. Enhanced regular air quality 
policies commonly appeared immediately after individual major events 
in the YRD (Supplementary Fig. 9). Therefore, measures initiated for 
short-term events not only resulted in immediate environmental ben-
efits, but also supported long-term air quality improvement.

Unfavorable meteorological conditions remained one of the main 
factors contributing to heavy urban pollution during major events. It 
is thus crucial to improve air quality forecasting and warning before 
major events to mitigate the impact. Accurate prediction of short-term 
meteorological conditions and air quality in advance can provide strong 
technical support for the government to conduct timely supervision 
and control of air pollution sources, overcoming the effect of unfavora-
ble weather conditions. More comprehensive online measurements 
of economic activity and pollution sources are thus recommended to 
obtain near-real-time emissions data, which can consequently improve 
the capability of air quality forecasting. Moreover, with the background 
of climate change, efforts should be continuously made to maintain the 
downward trend in air pollutant emissions and to prevent worsening 
air quality resulting from possible oscillating meteorology.

The uncertainties in this work lie in the satellite observations of 
NO2 TVCDs19, insufficient consideration of regional transport in the 
emission inversion and the decomposition of NOx emissions into indi-
vidual sectors. Satellite measurements are generally less sensitive to 
near-surface concentrations than MAX-DOAS, leading to the underesti-
mation of NO2 TVCDs (Fig. 1). To reduce such uncertainty, we improved 
and applied averaging kernels (AK), which indicate the sensitivities of 

satellite measurements at different vertical levels in the a posteriori 
emission estimation (see Methods for details). Moreover, the underes-
timation of NO2 TVCDs was recognized as a systematic bias that barely 
influences temporal variability, thus it would not change the main find-
ings of this work. In addition to anthropogenic sources, natural sources 
(for example, lightning) contribute to TVCDs. Following Kong et al.32, 
who assumed that the background TVCD, including the contribution 
from lightning, was half the minimum observed NO2 TVCD, we selected 
2014 YOG as an example and recalculated the a posteriori emissions. 
A small difference from the original estimate was found, with NMB 
and NME values of −0.2% and 7%, respectively. To examine the bias 
in NOx emission inversion due to regional transport, we performed a 
sensitivity simulation at a coarser horizontal resolution of 27 × 27 km2. 
The results showed that the difference in resolution barely affected 
urban-scale inversion in this study (Supplementary Text 1 and Sup-
plementary Table 7). The uncertainty in the estimation of sector-level 
emissions was also investigated by changing the criterion for defining 
the main emission sectors of individual grid cells within the simulation 
domain (Supplementary Fig. 2), with a small difference found for the 
inversed sector-level emissions (Methods, Supplementary Text 1 and 
Supplementary Table 8). In the future, further improvement in the 
estimation of short-term emissions at the city level could be achieved 
by incorporating more advanced artificial intelligence and air quality 
simulation technologies, as well as by measurement of TVCDs at high 
temporal resolution with geostationary satellites.

Methods
Integrated model framework
The methodological framework for this work is shown in Supplemen-
tary Fig. 10. It consists of four main modules (A–D). First, we recon-
structed the satellite-derived NO2 TVCDs (RETOMI2) dataset by filling in 
missing data and improving the resolution with XGBoost and DINEOF. 
Python v3.9 and Matlab v9.13.0 (R2022b) were used to conduct XGBoost 
and DINEOF, respectively. We then developed an inverse modeling 
system based on RETOMI2 and a coupled WRF-CMAQ model. The 
system integrates a mass balance method and relative error weighting 
with bottom-up estimates (MEIC) to deduce the 7-day moving aver-
ages of total NOx emissions (the a posteriori emissions) around indi-
vidual major events. Next, we combined the a posteriori emissions and  
bottom-up estimates to constrain the NOx emissions by sector and then 
decomposed the difference in NOx emissions between the main control 
period and the week before the control period into individual sectors. 
Last, the a posteriori emissions were applied in WRF-CMAQ to separate 
the contributions of meteorological and emission variations to the 
changing NO2 concentrations for the host cities during major events.

Data source
The primary NO2 TVCD data were obtained from three satellite prod-
ucts: OMI on board Aura (2004–present) with an equator crossing 
time of 13:45 local time, GOME-2 on MetOp-B (2012–present) with an 
equator crossing time of around 09:30 local time and TROPOMI on the 
Copernicus Sentinel-5 Precursor satellite with an equator crossing time 
of 13:30 local time. We developed a machine learning approach by year 
to estimate the NO2 TVCDs for 2010–2020 and 2023 for the YRD (2011, 
2012 and 2017 were excluded as there were no major events in those 
years). Only pixels with a view zenith angle less than 30°, cloud radia-
tion fraction less than 50% and aerosol optical depth less than 3 were 
used for the analysis. Moreover, the AKs from the level 2 products of 
POMINO and POMINO-TROPOMI were also processed and then applied 
in the subsequent comparison of the observations with simulations,  
taking into account the sensitivity of satellite measurements to  
different altitudes in the atmosphere33–35.

In total, 38 variables were selected as model predictors for 
XGBoost (Supplementary Tables 9–11), including meteorologi-
cal factors, land use factors, social and economic conditions, and 
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spatiotemporal information. AK-related parameters such as the solar 
zenith angle and observation angle were also included. Meteorological 
variables were downloaded from the ERA5 hourly atmospheric reanaly-
sis dataset (accessible online through https://cds.climate.copernicus.
eu/datasets/). Land use data were extracted from the Finer Resolution 
Observation and Monitoring of Global Land Cover (FROM-GLC 2017v1) 
dataset (accessible online through https://data-starcloud.pcl.ac.cn/
iearthdata/), which contains nine land use types at a spatial resolution 
of 30 × 30 m2 (ref. 36). Four types of land use (cropland, impervious 
surface, forest and water surface) were selected as they occupy over 
87% of the YRD territory. Population density data were obtained from 
WordPop (https://hub.worldpop.org/geodata/summary?id=44833).

We used MAX-DOAS measurements at four sites to evaluate the 
performance of the reconstructed data. Monthly data (within January 
2014–January 2017) were available for three sites in Hefei, Nanjing and 
Shanghai37 and daily data (March 2018–January 2019) were available for 
Xuzhou38. For the daily data, we averaged all valid MAX-DOAS measure-
ments within ±1 h of the TROPOMI overpass time and compared them 
with the satellite-derived data for the single grid cell where the site was 
located. The bottom-up estimates of NOx emissions were taken from 
MEIC (http://www.meicmodel.org). Biogenic emissions were provided 
by the Model of Emissions of Gases and Aerosols from Nature (MEGAN 
v3.1, https://bai.ess.uci.edu/megan). As shown in Supplementary  
Fig. 11, soil NOx contributed 1.3–4.4% of the total NOx emissions for 
the five events conducted in summer and autumn, and less than 1% for 
the other six events in winter. Ground observations of meteorological 
variables at 3-h intervals were downloaded from the National Climatic 
Data Center to evaluate the WRF modeling performance (2010–2023). 
Daily surface concentrations of air pollutants for 2014–2023 in the YRD 
were observed at state-operated air quality monitoring stations and 
obtained from the Ministry of Ecology and Environment (https://air.
cnemc.cn:18007/). A total of 567 observation stations were included 
to assess the model performance. NO2 and O3 concentrations were 
reported for the reference state (298.15 K and 1,013.25 hPa), and PM2.5 
concentrations at the actual monitoring conditions. We compared the 
original observation data with simulations, and the periods and/or sta-
tions with missing observation values due to equipment maintenance 
or power outages were excluded from model performance evaluation.  
The locations of the meteorological, air quality monitoring and  
MAX-DOAS stations are shown in Supplementary Fig. 2.

Predicting NO2 TVCDs with an improved machine learning 
approach
XGBoost, a gradient boosting tree machine learning algorithm, was 
used in satellite data reconstruction, as shown in steps 1 and 2 in Supple-
mentary Fig. 10a. For step 1, POMINO (as the target variable), GOME-2 
and ancillary data (mainly meteorological reanalysis data, land use 
(with the original horizontal resolution of 30 m) and population density 
data (1 × 1 km2)) were incorporated into XGBoost to obtain the recon-
structed OMI product (REOMI), which expands the spatial coverage 
of POMINO to that of the union of POMINO and GOME-2. For step 2, 
POMINO-TROPOMI (as the new target variable), REOMI and ancil-
lary data were incorporated to generate the reconstructed TROPOMI 
product (RETOMI), aiming to improve the resolution of REOMI. NO2 
data from POMINO, GOME-2, POMINO-TROPOMI and ancillary data 
(summarized in Supplementary Tables 9 and 10) were downscaled to 
the same horizontal resolution by bilinear interpolation (0.25° × 0.25° 
and 0.05° × 0.05° for predicting REOMI and RETOMI, respectively). In 
addition to TVCDs, the AKs of the POMINO-TROPOMI (as the new target 
variable) and POMINO products and relevant satellite parameters were 
incorporated to create reconstructed AKs (REAK) via a similar process 
to step 2. Due to the lack of a POMINO dataset in 2023, we corrected 
the TVCDs (and AKs) using POMINO-TROPOMI for 2023 based on the 
correlation between the TVCDs (and AKs) of POMINO-TROPOMI and 
RETOMI from 2018 to 2020 (Supplementary Figs. 12 and 13).

Tenfold cross-validation was performed to evaluate the perfor-
mance of the model for predicting REOMI, RETOMI and REAK. For each 
fold, the available data for each model were divided into a training 
set (90%) and a validation set (10%). As shown in Supplementary Figs. 
14–16, a satisfactory capability of model prediction was demonstrated 
by a small root mean squared error (RMSE) and mean average error and 
large coefficient of determination.

Filling the data gap with an optimized empirical orthogonal 
function method
We derived RETOMI2 (RETOMI with further data filled) products using 
the DINEOF method (step 3 in Supplementary Fig. 10a). The DINEOF was 
developed by Geo-Hydrodynamics and Environmental Research group 
at the University of Liège, Belgium, as a method for modeling the behav-
ior of a numerical model without a priori information (by obtaining the 
necessary parameters on its own). In this method, empirical orthogonal 
functions (EOFs) were combined with interpolation techniques to 
reconstruct missing data caused by cloud cover, sensor limitations or 
other factors39,40. The specific methods are described below.

First, in each selected year, RETOMI was processed as a matrix X 
(m×n), where m and n are the spatial and temporal dimensions of the 
observation X, respectively. Meanwhile, 1% of the valid data in X were 
randomly selected as the cross-validation dataset XC and then set to 0. 
The spatiotemporal mean of X was removed to highlight the pattern 
of variability. All missing points were set to 0. The initial number of 
modes P for EOF was set to 1 as the starting point for iterative analysis.

We then performed singular value decomposition of matrix X:

X = USVT (1)

where U (m×m), S (m×n), and VT (n×n) represent the spatial eigenmode, 
the singular value matrix and the transpose of the temporal eigenmode, 
respectively. Hence, the dataset of missing points Xre could be decom-
posed using equation (2):

X re
r,l =

P
∑
n=1

an(un)r(vTn)l (2)

where r and l denote the rows and columns of the matrix X, respec-
tively, an is the corresponding singular value, and un and vTn  are the  
n columns of the spatial and transposed temporal eigenmodes, respec-
tively. The RMSE of the cross-validation after reconstruction can be 
obtained with equation (3):

RMSE =
√√√
√

1
N

N
∑
n=1

(xren − xCn )
2

(3)

where N is the number of data points in the cross-validation set XC, Xre
n  

denotes the reconstructed value at the nth data point, and xCn  denotes 
the original observed value in the cross-validation set at the nth point. 
After completing the data for the missing points, the value of Xre can 
be expressed according to equation (4):

Xre = X + ∂X (4)

where ∂X is the matrix of correction values for the missing points.
Next, we repeatedly applied equations (1)–(3) to the singular value 

decomposition of a new Xre until the RMSE converged (convergence 
level: 0.0001). Meanwhile, the maximum number of iterations to pre-
vent the continuous non-convergence and the waste of computational 
cost was set to 300. The P value was incremented stepwise and the 
corresponding RMSE was recorded. A change in RMSE of less than 1% 
was considered satisfactory for this study (Supplementary Fig. 17). 
The corresponding P was set to Pb and the final reconstruction matrix X  
was obtained. Finally, X was added to the spatiotemporal mean derived 
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at the very beginning and inversely log-transformed to obtain the final 
reconstructed product RETOMI2.

Estimating a posteriori NOx emissions with an inverse 
modeling system
We applied a mass balance method to obtain the ‘top-down’ estimates 
of the 7-day moving averages of NOx emissions around individual major 
events in the YRD based on the difference between the simulated and 
observed NO2 TVCDs and the relationship between the changing NOx 
emissions and NO2 TVCDs:

Et,i,top-down = Et,i,bottom-up (1 + (ΩΩΩobs −ΩΩΩsim

ΩΩΩsim
)
t,i
βt,i) (5)

where i represents a model grid cell (9 × 9 km2), t represents a 7-day  
time window, Et,i,top-down is the ‘top-down’ estimation of NOx emis-
sions around an individual major event, Et,i,bottom-up is the NOx emis-
sions from MEIC for the same period, Ωobs represents the NO2 TVCDs  
from RETOMI2, Ωsim represents the simulated NO2 TVCDs obtained  
with CMAQ and βt,i is a unitless factor that represents the local sensi
tivity of NO2 TVCDs to changing NOx emissions.

A nested simulation using CMAQ v5.2 was conducted with the 
horizontal resolutions at 27 × 27 km2 and 9 × 9 km2 for domains 1 and 
2, respectively (Supplementary Fig. 2). The meteorology field was 
driven by WRF v3.9.1. Details of the model settings have been described 
previously41. βt,i was calculated as a comparison between a baseline 
simulation and an extra simulation with 10% perturbation in NOx  
emissions (the emission perturbation level had a limited effect on β, 
Supplementary Text 1 and Supplementary Table 12):

βt,i =
ΔEt,i,bottom-up
Et,i,bottom-up

÷
ΔΩΩΩt,i,bottom-up

ΩΩΩt,i,bottom-up
(6)

where ΔEt,i,bottom-up is the emission perturbation (10% reduction in NOx 
emissions over the YRD in this work), Ωt,i,bottom-up represents the NO2 
TVCDs near the TROPOMI overpass time (06:00 UTC) from the base-
line simulation and ΔΩt,i,bottom-up is the simulation difference after the 
10% perturbation in NOx emissions. Typically, β tends to be less than 
1 in polluted regions of the YRD because the growth in NOx emissions 
consumes hydroxyl radicals and extends the lifetime of NOx, while in 
clean areas, growing NOx emissions reduces the NOx lifetime, resulting 
in β values greater than 1. Supplementary Fig. 18 shows the average 
values of regional β over the YRD during the major events.

The monthly NO2 TVCDs from the baseline simulation and 
RETOMI2 for July, August, September, November and December 2014 
(as an example) are shown in Supplementary Fig. 19. Strong correlations 
were found for all the selected months (R > 0.76), while the model per-
formance varied for different months (indicated by different NMBs), in 
part as a result of the uncertainty in the temporal distribution of NOx 
emissions. The bottom-up emission inventory was subject to uncertain-
ties in activity levels, emission factors and the spatiotemporal alloca-
tion of emissions, while satellite observations and air quality modeling 
also introduced errors into the ‘top-down’ estimations.

To further reduce the uncertainty informed by a previous study14, 
we computed the a posteriori emission with its errors on a monthly 
basis using a great likelihood estimation, which combines the top-down 
estimates and the bottom-up emission inventory by weighting them 
according to their relative errors. We assumed that the errors in both 
were lognormally distributed:

ln Eposteriori =
(ln Etop-down)(lnεbottom-up)

2 + (ln Ebottom-up)(lnεtop-down)
2

(lnεbottom-up)
2 + (lnεtop-down)

2
(7)

(lnεposteriori)
−2 = (lnεbottom-up)

−2 + (lnεtop-down)
−2

(8)

where Eposteriori, Etop-down and Ebottom-up represent the a posteriori, top-down  
and bottom-up estimates, respectively, and εposteriori, εbottom-up and  
εtop-down are the relative errors in the a posteriori, bottom-up and top-
down estimates, respectively, which were determined following pre-
vious studies14,42,43. Specifically, εbottom-up was determined according to 
the difference between MEIC and local emission inventories44,45, and 
εbottom-up is the relative error of the model simulation and satellite data. 
The former was determined as the difference between simulations 
with two versions of CMAQ (CMAQ v5.1 and v5.2), while the latter was 
determined as the difference between daily and monthly averages of 
NO2 TVCDs in RETOMI2 for each grid cell.

Decomposing the 7-day moving averages of NOx emissions into 
sectors
We combined the a posteriori emissions and sector distribution of 
bottom-up estimates (MEIC) to obtain the spatiotemporal pattern 
of NOx emissions by sector using the method described previously46. 
First, a sector-and-city specific scaling factor was calculated according 
to the emissions difference between the a posteriori emissions and 
MEIC for grid cells dominated by a given sector (with the proportion 
of emissions over 50% in each grid) within the city:

scale factort,s,c = 1 +
∑i (E

s,c
t,i,posteriori − Es,ct,i,bottom-up)

∑i (E
s,c
t,i,bottom-up)

(9)

where Es,ct,i,posteriori  and Es,ct,i,bottom-up
 are the a posteriori and bottom-up  

estimates for grid cell i in city c dominated by sector s (such as  
industry, power or transport) at time t, respectively. Note that the 
residential sector was not considered because of its small contribution 
to total emissions. Then, the bottom-up emissions were corrected by 
sector with the scaling factors (equation (10)). Last, we scaled the 
corrected bottom-up NOx emissions to be consistent with the a pos-
teriori emissions to minimize the remaining differences. The a pos-
teriori emissions of a given sector were estimated according to the 
corresponding corrected bottom-up emissions for each grid cell in 
the city:

Es,t,i,c,bottom-up,corrected = Es,t,i,c,bottom-up × scale factort,s,c (10)

Es,t,i,c,constrained = Es,t,i,c,bottom-up,corrected ×
Et,i,c,posteriori

∑sEs,t,i,c,bottom-up,corrected
(11)

where Es,t,i,c,bottom-up,corrected and Es,t,i,c,bottom-up represent the corrected  
and initial bottom-up NOx emissions from sector s for city c at time t, 
respectively, and Es,t,i,c,constrained is the final target NOx emissions from 
sector s for city c at time t.

Separating the contributions of emission and meteorological 
variations to changing NO2 concentrations
We assessed the contributions of emission and meteorological varia-
tions to changing air quality during each major event through simula-
tion experiments based on the a posteriori emissions, informed by 
previous work47. The simulations integrated varying meteorological 
and emission inputs to quantify their respective influence on changes 
in NO2 concentration, including BASE, meteorological change (MET) 
and emission change (EMIS). The simulation periods are shown in 
Supplementary Table 6, where P2 is basically equivalent to the main 
control period of each major event (except 2010 EXPO) and P1 is the 
time period before P2 with the same duration as P2. The BASE case 
employed both varying meteorological and emission inputs from  
P1 to P2, reflecting the actual conditions, MET maintained constant 
emission levels at the P1 level but applied varying meteorological 
inputs to evaluate meteorological-induced (MI) changes and EMIS 
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fixed the meteorological conditions at the P1 level but applied vary-
ing emission inputs, allowing the direct determination of emission-
induced (EI) changes.

The MI and EI changes can be estimated as follows:

MIMET = concP2,MET − concP1,MET (12)

EIMET = concP2,BASE − concP1,BASE −MIMET (13)

where MIMET and EIMET represent the MI and EI changes estimated on 
the basis of the results obtained with MET, respectively, concP1,MET and 
concP2,MET represent the average concentrations of NO2 during P1 and 
P2 under MET, respectively, and concP1,BASE and concP2,BASE represent the 
average concentrations of NO2 during P1 and P2 under BASE conditions, 
respectively. Similarly, the MI and EI changes were also estimated on 
the basis of EMIS:

EIEMIS = concP2,EMIS − concP1,EMIS (14)

MIEMIS = concP2,BASE − concP1,BASE − EIEMIS (15)

Due to the nonlinear effects of atmospheric chemical systems, the 
two cases yielded different MI and EI changes. The average of the two 
cases was used in this study to represent the contribution of emission 
variation (contriEMIS) and meteorological variation (contriMET) to NO2 
concentration during the major events:

contriMET =
MI

MI+EI
× 100 (16)

contriEMIS =
EI

MI+EI
× 100 (17)

where MI is the average of MIMET and MIEMIS and EI is the average of EIMET 
and EIEMIS.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The tropospheric NO2 column data from POMINO, POMINO-TROPOMI 
and GOME-2 were taken from http://www.pku-atmos-acm.org/acm-
Product.php/ and https://www.temis.nl/. Meteorological variables 
were downloaded from the ERA5 hourly atmospheric reanalysis dataset 
(accessible at https://cds.climate.copernicus.eu/datasets/). Population 
density data were obtained from WordPop (https://hub.worldpop.org/
geodata/summary?id=44833). The bottom-up emissions were taken 
from the Multiple-resolution Emission Inventory for China (http://
www.meicmodel.org). The data produced in this study (RETOMI2 
and the a posteriori emissions of NOx for the 11 events), as well as the 
source data for Figs. 1–5, are available via Figshare at https://figshare.
com/s/d8b9b6e8b9f34ab5bdc8 (ref. 49). Source data are provided 
with this paper.

Code availability
The codes for predicting NO2 TVCDs using XGBoost and DINEOF and 
for estimating the a posteriori NOx emissions are available via Figshare 
at https://figshare.com/s/d8b9b6e8b9f34ab5bdc8 (ref. 49).
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dataset (accessible online through https://cds.climate.copernicus.eu/cdsapp#!/home). Population density data were obtained from WordPop (https://
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Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender This paper does not involve human research participants.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

This paper does not involve human research participants.

Population characteristics This paper does not involve human research participants.

Recruitment This paper does not involve human research participants.

Ethics oversight This paper does not involve human research participants.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description This paper combines emission datasets, satellite observation data, machine learning and air quality model to study the effectiveness 
of short-term emission controls for 11 major events hosted in different cities in the Yangtze River Delta (YRD) region of China.

Research sample The research sample comprised the 11 major events hosted in different cities in the Yangtze River Delta (YRD) region of China during 
2010-2023. The choice of these events was based on their significance and representation of different cities in the YRD region. The 
sample aimed to represent the air quality and emission control efforts during these events.

Sampling strategy This paper categorized the cities in the Yangtze River Delta (YRD) region into the cities that hold major events and the surrounding 
cities and conducted comparative analysis. Moreover, to evaluate the XGboost model performance for predicting NO2 column, 
tenfold cross-validation was performed, in which the available data of each model were divided into a training set (90%) and a 
validation set (10%) for each fold.  

Data collection Most of the research data was obtained and downloaded from public platforms. The tropospheric NO2 column data from POMINO, 
POMINO-TROPOMI and GOME-2 were collected at http://www.pku-atmos-acm.org/acmProduct.php/ and https://www.temis.nl/. 
Meteorological variables were downloaded from the ERA5 hourly atmospheric reanalysis dataset (accessible online through https://
cds.climate.copernicus.eu/cdsapp#!/home). Population density data were obtained from WordPop (https://hub.worldpop.org/
geodata/summary?id=44833). The bottom-up emissions were taken from Multiple-resolution Emission Inventory for China (MEIC; 
http://www.meicmodel.org). See Method and SI for more details.

Timing and spatial scale Time scale: 2010-2020 year during major events period; Spatial scale: the Yangtze River Delta region in China. The daily (7-day 
moving average) NOx emissions were estimated at horizontal resolution of 9km.

Data exclusions During the process of satellite data, only pixels with view zenith angle less than 30°, cloud radiation fraction less than 50%, and 
aerosol optical depth less than 3 were used for the analysis.

Reproducibility The results of the paper can be reproduced using the same data and models.

Randomization No randomization strategy was employed because this paper does not use experimental design.

Blinding Since the analysis between the experimental group and the control group is not involved, this study was not relevant with extent of 
blinding.

Did the study involve field work? Yes No
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Materials & experimental systems
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Plants

Methods
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ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes No plant genotype was applied in this work.

Seed stocks No plant was applied in this work.

Authentication Not applicable.
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